Collapsed Variational Bayes Inference of Infinite Relational Model

نویسندگان

  • Katsuhiko Ishiguro
  • Issei Sato
  • Naonori Ueda
چکیده

The Infinite Relational Model (IRM) is a probabilistic model for relational data clustering that partitions objects into clusters based on observed relationships. This paper presents Averaged CVB (ACVB) solutions for IRM, convergence-guaranteed and practically useful fast Collapsed Variational Bayes (CVB) inferences. We first derive ordinary CVB and CVB0 for IRM based on the lower bound maximization. CVB solutions yield deterministic iterative procedures for inferring IRM given the truncated number of clusters. Our proposal includes CVB0 updates of hyperparameters including the concentration parameter of the Dirichlet Process, which has not been studied in the literature. To make the CVB more practically useful, we further study the CVB inference in two aspects. First, we study the convergence issues and develop a convergence-guaranteed algorithm for any CVB-based inferences called ACVB, which enables automatic convergence detection and frees non-expert practitioners from difficult and costly manual monitoring of inference processes. Second, we present a few techniques for speeding up IRM inferences. In particular, we describe the linear time inference of CVB0, allowing the IRM for larger relational data uses. The ACVB solutions of IRM showed comparable or better performance compared to existing inference methods in experiments, and provide deterministic, faster, and easier convergence detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical Collapsed Stochastic Variational Inference for the HDP

Recent advances have made it feasible to apply the stochastic variational paradigm to a collapsed representation of latent Dirichlet allocation (LDA). While the stochastic variational paradigm has successfully been applied to an uncollapsed representation of the hierarchical Dirichlet process (HDP), no attempts to apply this type of inference in a collapsed setting of non-parametric topic model...

متن کامل

Rethinking Collapsed Variational Bayes Inference for LDA

We propose a novel interpretation of the collapsed variational Bayes inference with a zero-order Taylor expansion approximation, called CVB0 inference, for latent Dirichlet allocation (LDA). We clarify the properties of the CVB0 inference by using the αdivergence. We show that the CVB0 inference is composed of two different divergence projections: α = 1 and −1. This interpretation will help she...

متن کامل

Nonparametric Bayesian Methods for Relational Clustering

An important task in data mining is to identify natural clusters in data. Relational clustering [1], also known as co-clustering for dyadic data, uses information about related objects to help identify the cluster to which an object belongs. For example, words can be used to help cluster documents in which the words occur; conversely, documents can be used to help cluster the words occurring in...

متن کامل

Averaged Collapsed Variational Bayes Inference

This paper presents the Averaged CVB (ACVB) inference and offers convergence-guaranteed and practically useful fast Collapsed Variational Bayes (CVB) inferences. CVB inferences yield more precise inferences of Bayesian probabilistic models than Variational Bayes (VB) inferences. However, their convergence aspect is fairly unknown and has not been scrutinized. To make CVB more useful, we study t...

متن کامل

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a Bayesian network that has recently gained much popularity in applications ranging from document modeling to computer vision. Due to the large scale nature of these applications, current inference procedures like variational Bayes and Gibbs sampling have been found lacking. In this paper we propose the collapsed variational Bayesian inference algorithm for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1409.4757  شماره 

صفحات  -

تاریخ انتشار 2014